उत्तर बन्न

 UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2023

CC14-Physics

Statistical Mechanics

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions of the following:
(a) What is the difference between μ-space and Γ-space?
(b) Distinguish between microstate and macrostate.
(c) Sketch the Fermi-Dirac distribution function for a gas at $T=0$ and at $T>0$.
(d) State the relation between thermodynamic probability and entropy.
(e) Explain why does radiation exert pressure.
(f) What is a Boson? Give examples.
(g) Can you expect a condensation in electron gas? -Explain.
(h) How does the lattice vibrational contribution to the specific heat vary with temperature?

GROUP-B

Answer any three questions from the following
 $5 \times 3=15$

2. (a) What is grand canonical potential? Express grand canonical partition function in terms of the potential.
(b) Explain the postulate of 'equal a priori probability'.
3. (a) Using canonical ensemble establish that $\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=k_{\mathrm{B}} T C_{V}$.
(b) Given a Fermi gas, what is the mean occupation number for a state with energy $2 k_{\mathrm{B}} T$ above the Fermi energy?
4. (a) Show that for a Fermi-Dirac gas, the average energy per particle is $3 E_{\mathrm{F}} / 5$ at $T=0$, where E_{F} is the Fermi-energy.
(b) In BE condensation, show graphically how the condensate fraction varies with temperature.

UG/CBCS/B.Sc./Hons./6th Sem./Physics/PHYSCC14/2023

5. Consider a photon gas enclosed in volume V and in equilibrium at temperature T. Using BE distribution function -
(a) Show that the number of photons having frequency between v and $v+d v$ is given by,

$$
N(v) d v=\frac{8 \pi r}{c^{3}} \frac{v^{2} d v}{e^{h v / k T}-1} .
$$

(b) Hence show that the number of photons in the volume is proportional to T^{3}.
(c) Using the result in (a) deduce the Planck's law.
6. There are 10 identical particles, each of mass m, to be accommodated in a cubical box of side L. What is the ground-state energy of the system if the particles obey (i) BE-statistics and (ii) FD statistics?

GROUP-C

Answer any two questions from the following
7. (a) Show that for a one-dimensional harmonic oscillator, the fundamental unit of volume of phase space is h, where h is Planck's constant.
(b) Assuming microcanonical ensemble of a classical ideal gas, deduce the expressions for entropy, internal energy, and specific heat capacity.
8. (a) Consider a system of 2 particles each of which can be in any one of 3 quantum states of respective energies $0, \varepsilon$ and 3ε. The system is in contact with a heat reservoir at temperature T. Calculate the canonical partition function
(i) If the particles are distinguishable.
(ii) If the particles are indistinguishable Fermions.
(iii) If the particles are indistinguishable Bosons.
(b) Show that the thermodynamic probability for an ideal gas of N molecules in a volume is of the form $r \propto V^{N} f(E)$. Hence derive the ideal gas law.
9. (a) A system of identical non-interacting particles of a gas Obey's Pauli's Exclusion Principle. Obtain the distribution law. Discuss (i) the classical limit and (ii) behavior at $T=0 \mathrm{~K}$.
(b) Define Fermi energy. Calculate the Fermi energy at $T=0 \mathrm{~K}$ for metallic silver containing one free electron per atom. The density at silver is $10.5 \mathrm{~g} / \mathrm{c} . \mathrm{c}$. and atomic weight is 108 .
10.(a) Derive an expression for electron degeneracy pressure of a white dwarf star.
(b) Use the above result to deduce the mass-radius relation of a white dwarf star.
(c) What is Chandra sekhar mass limit?

